即刻App年轻人的同好社区
下载
App内打开
红狐狸狼
19关注0被关注0夸夸
红狐狸狼
1年前

肖小跑: 金融史业界有条“佩珀定律”。 定律如是说:当某个东西一直在上涨,并且看起来不可持续时,如何判断它何时会停止?做法如下: 1. 利用你所学到的一切知识、分析能力,估出一个逆转的时间点。 2. 把从现在到这个时间点中间的时间加倍(x2),再减去一个月(-1)。 比如,如果你预估逆转点是半年之后(6个月),那么实际的逆转点可能是11个月(6x2-1)之后。 这一定律可以应用在很多地方,例如人工智能热潮,尽管泡沫可能存在,但泡沫持续繁荣的时间可能会比你想象的时间时间,如英伟达。如果非要给这段时间加个数字,那就是“乘二减一”。 佩珀定律似乎是对凯恩斯那句名言——“市场保持非理性的时间之长,可能远超你能保持不破产的时间”的一种恶搞式精确表述。判断高估值何时会转向并回归价值,可能是世界上最困难的事情之一。 但佩珀定律会给你一个具象化的参考。任何交易者、市场观察家在做判断时,都需要考虑市场的非理性层次和从众心理反馈。如果不将这些因素考虑在内,那么你的判断可能会有大出入,蒙受高损失。 在电影《大空头》中,多位主角做空美国次贷债券时,都经历过转折点并未如预期发生的煎熬时刻。熬到命悬一线,差不多“乘二减一”的时间点,事情才发生逆转,好在还没破产,才一战成名。

00
红狐狸狼
2年前
随手转发

歸藏: Sora 详细的技术报告发布了,相关从业者可能都需要看看。 里面有 Open AI的训练思路以及 Sora 详细的技术特性,我从里面找了一些要点,详细的可以去看完整内容。 简单来说 Sora 的训练量足够大也产生了类似涌现的能力。 技术特点: 三维空间的连贯性:Sora可以生成带有动态相机运动的视频。随着相机移动和旋转,人物和场景元素在三维空间中保持连贯的运动。 模拟数字世界:Sora还能模拟人工过程,如视频游戏。Sora能够同时控制Minecraft中的玩家,并高保真地渲染游戏世界及其动态。通过提及“Minecraft”的提示,可以零样本地激发Sora的这些能力 长期连续性和物体持久性:对视频生成系统来说,Sora通常能够有效地模拟短期和长期的依赖关系。同样,它能在一个样本中生成同一角色的多个镜头,确保其在整个视频中的外观一致。 与世界互动:Sora有时能够模拟对世界状态产生简单影响的行为。例如,画家可以在画布上留下随时间持续的新笔触,或者一个人吃汉堡时留下咬痕。 训练过程: Sora 的训练受到了大语言模型(Large Language Model)的启发。这些模型通过在互联网规模的数据上进行训练,从而获得了广泛的能力。 Sora实际上是一种扩散型变换器模型(diffusion transformer)。 首先将视频压缩到一个低维潜在空间中,然后将这种表现形式分解成时空区块,从而将视频转换为区块。 训练了一个用于降低视觉数据维度的网络。这个网络以原始视频为输入,输出在时间和空间上都被压缩的潜在表示。Sora在这个压缩的潜在空间上进行训练,并在此空间中生成视频。还开发了一个对应的解码器模型,它能将生成的潜在表示映射回到像素空间。 对于给定的压缩输入视频,提取一系列时空区块,它们在变换器模型中充当标记(token)。这种方案同样适用于图像,因为图像本质上是单帧的视频。基于区块的表示方法使Sora能够针对不同分辨率、持续时间和纵横比的视频和图像进行训练。在推理过程中,可以通过在适当大小的网格中排列随机初始化的区块来控制生成视频的大小。 随着 Sora 训练计算量的增加,样本质量有了显著提升。 Sora训练时没有对素材进行裁切,使得Sora能够直接为不同设备以其原生纵横比创造内容。 针对视频的原生纵横比进行训练,还可以提高构图和取景的质量。 训练文本到视频的生成系统需要大量配有相应文本提示的视频。应用了在DALL·E 3中引入的重新字幕技术到视频上。 与DALL·E 3相似,也利用了GPT技术,将用户的简短提示转换成更详细的提示,然后发送给视频模型。 技术报告详细内容:https://openai.com/research/video-generation-models-as-world-simulators

00
红狐狸狼
3年前
重新打开四字平台,发现上次清盘转战小宇宙。也就是前年的事情而已。。。时间维度确实很有意思,有时候觉得快,有时候又觉得慢。
00